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Orthonormal polynomials with weight Irl P exp(-r 4
) have leading coefficients

with recurrence properties which motivate the more general equations
(m«(m ,+ (m + (m ,,) = y~, m = I, 2,... , where (0 is a fixed nonnegative value and
I,. Y, '""" are positive constants. For this broader problem, the existence of a
nonnegative solution is proved and criteria are found for its uniqueness. Then, for
the motivating problem, an asymptotic expansion of its unique nonnegative solution
is obtained and a fast computational algorithm, with error estimates, is given.

1. INTRODUCTION

Given p>-l and r=1,2,..., let w(r)=lrIPexp(~lrlr), where
-00 < r < +00. Then the weight function w(r) defines unique orthonormal
polynomials po(r), PI(r), pz(r),... such that

fOO Pm(r)Pn(r)w(r)dr=omn
-00

(1.1 )

and Pm(r) = trmr m + lower terms, where the coefficients 7rm> 0. We set
p_l(r) = 0, 7r_ 1 = 0. Freud [3-51 and Nevai [81 have studied the ratios
7rm - 1/7rm because these determine the polynomials Pm(r). When r = 2, Freud
shows

m=O, 1,2,.... (1.2)

When r = 4, he finds that these ratios obey a nonlinear recurrence relation.
Indeed; if ';m = (7rm_ I /7rm)Z, then ';0 = °and all higher ';m > 0, while

m = 1,2,.... (1.3)

Freud [5] shows that limm(12/m)I/Z';m = 1.
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358 LEW AND QUARLES

Here we extend and sharpen these results. Taking any positive sequence
(YI' Y2 ,... ) we fix ~o ~ 0 and study the real sequences (~1' ~2"") such that

m = 1,2,.... (1.4 )

Since the value ~o is already given, each real ~l inductively determines an
infinite sequence (~1' ~2'''') unless some component ~m is precisely zero-and
this last condition excludes just countably many ~I' If Ym = Y and ~o "* 0 then
(1.4) has a period-4 solution, namely,

and this sequence has some negative terms; but our prime concern will be
nonnegative ~m' Unless we state otherwise, hereafter the Ym are positive and
the ~m are nonnegative.

Other sequences give useful illustrations. If Ym = fJm + Y, where fJ ~ 0 and
y = ~oy1 > 0, then the following satisfies (1.4):

for m = 1,2,.... (1.6 )

When fJ = 0, these constants Ym include the previous example, but the values
(1.6) exceed 0; so these ~m furnish a different solution. Yet another solution
provides a later counterexample. If Ym= y(a m - a ~m), where a > 1 and
Y > ~o = 0, then the following satisfies (1.4):

for m = 1,2,.... (1. 7)

Further notation simplifies this work. The set R n (resp. ROO) of all real n
tuples (resp. real infinite sequences) is a vector space under componentwise
addition and real scalar multiplication. The scalar 0, with no ambiguity, will
denote the zero vector in either space. Typical elements x, y of these spaces
will have respective components ~m' 17 m for positive indices m; the scalars
~o' 170 with subscript zero will not be components of the associated vectors.
Given any x = (~1' ~2 ,... ) and y = (171,172"")' write x ~ y (resp. x <y) if all
~m ~ 17m (resp. ~m < 17m)' Call x nonnegative when 0 ~ x; call x positive when
o<x.

The finite-dimensional space R n will use the standard 100 norm:

Ilxll = max{l~ml: m = 1,... , n}. (1.8)

More generally, let 0 <a = (a!, a2,... ) E ROO and let 0 < b = (/3l'fJ2"") E ROC.
Then the set Roo, with the norm

(1.9)
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is a complete metric space with distance d(x,y) = Ilx - ylla' (This definition
allows infinite distances, but these cause no difficulties.) If II . lib-convergence
implies 11·lla-convergence, then [Iblla < +00; however, Ilxll a ~ Ilxllb Ilblla , and
this proves the converse. Thus a and b define the same topology (so that a
and b yield equivalent norms) if and only if II a lib' lib Iia < +00.

This work fixes positive c = (YI' Y2 ,... ) E R rJ:) and ~o ~ 0; it seeks
nonnegative x = (~I , ~2 ,... ) E R rJ:) where x satisfies (1.4). Section 2 obtains
some basic results for an auxiliary linear recurrence with variable coef
ficients. Section 3 discusses the truncated problem of finite sequences ~ 1 , ... , ~n

with fixed ~o, ~n +I' Sections 4, 5, 6, for infinite sequences, using an
equivalent formulation as a fixed-point problem, prove the existence of
nonnegative solutions, and give several criteria for uniqueness. Conversely,
an argument in Section 6 generates multiple nonnegative solutions for some
vectors c. Also, the stronger hypotheses of Section 5 yield important results
for norm-convergence. Section 7, on sequence computation, shows the
instability of forward iteration and gives a stable algorithm, with error
estimates. Sections 8 and 9, for the original problem (1.3), find an
asymptotic expansion of the unique nonnegative solution, and report
computational experience with a still more refined algorithm.

2. LINEAR RECURRENCE

Given any complex sequence (WI' w 2 ,... ), consider the complex sequence

('0"1"2'''') such that

'm + I - W m . 'm + 'm - I = 0 (2.1 )

when m = 1,2,.... This section, for certain recurrences (2.1), extends a well
known theorem of Poincare (MonteI [7, Chap. 5]) and collects auxiliary
results for later use. If ('0' 'I) = (1,0) or (0,1), respectively, then WI"'" W m

determine the value 'm+1' whence 'm+1 is some function Bm(wl""'w m) or
Cm(wl""'wm), and Bo=O, Co = 1. Then the linearity of (2.1) gives the
solution for any «(0' 'I):

(2.2)

If WI = ... = W m= W then we adopt a simpler notation: Bm(wl''''' wm) =
Bm(w) and Cm(w 1 , ... , wm) = Cm(w). Also, Um(r), for each integer m, is the
m'th Chebyshev polynomial of the second kind (Abramowitz and Stegun [1,
(22.2.5)]).

LEMMA 2.1. If m = 0, 1, 2,... then Cm(w) = Um(w/2). Indeed, Cm(2) =
m + I and Cm(-2) = (_I)m (m + 1). If W *- ±2 and a is either complex
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number such that a+a-1=w, then Cm(w)=(am+l-a-m-l)/(a-a-I).
Also, Bm(w) = -Cm_1(w)for m = 0,1,2,... , where these explicitforms define
Cm(w)for m < 0.

Proof The explicit forms Cm(w) and -Cm_](w) satisfy the recurrence
(2.1). The resulting expressions B m(w) and Cm(w) reproduce the stated '0
and 'I' If w = 2 cos () and 0< 0 < n, then a = exp(±iO) and (Abramowitz
and Stegun [1, Eq. (22.3.16)]):

Cm(w) = sin(m + I)Osin 0= Um(cos 0) = Um(w/2). (2.3)

Analytic continuation admits all other complex w.
Now let In be the n X n identity matrix, where n = 1,2,... , and let En be

the n X n matrix (cij) such that cij = 1 when Ii - jl = 1 but otherwise Eiij = 0.
If Omn = mn/(n + I), where m = 1,... , n, then

[E ( . 0 . 0 )transpose I - 2 0 . kOn' sm mn ,... , sm n mn k - cos mn' sm mn (2.4)

for k = 1,..., n. Thus En has the n distinct eigenvalues 2 cos 0mn' and these
have the corresponding nonzero eigenvectors (sin Omn ,... , sin nOmnrranspose.

LEMMA 2.2. If n = 0, 1, 2,... then

Cn(Wl"'" wn) = det(En+diag(wl'oo" wn)). (2.5)

If all wm~ 2, where m = 1'00" n, then En + diag(w] '00" wn) is a positive
definite matrix, and

If also w;" ~ W m and some w£ > wk ' where 1~ k ~ n, then

(2.7)

Proof A bottom-row expansion of det(En+diag(wl"'" wn)) obtains the
recurrence (2.1) for these determinants. (Any such expansion by minors
assigns the value 1 to a zero-order determinant.) But inspection yields (2.5)
when n = 0, 1,2; so induction proves (2.5) when n = 0, 1,00.. The matrix
En + 2In is positive definite, because the principal minors have the form
Cm(2) = m + 1 > O. The matrix diag(w 1 - 2,..., w n - 2) is nonnegative
definite whenever all w m ~ 2. These matrices have positive definite sum
En + diag(w] ,... , wn), which has strictly positive determinant Cn(w 1 , ... , wn).
But expansion via the mth row gives

and this fact, for all variables w m ' yields (2.7). Finally, (2.7) implies (2.6).
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THEOREM 2.3. If 2 ~ WI' W 2'... and 0 <e such that 2 + e <W _ =
lim infmwm< +00 and w+ = lim sUPmwm ~ +00, then this e determines
constants y_(e), y+(e) > 0 such that

m = 0, 1,2,....

(2.9)

Proof Any positive e fixes an integer n such that W m ~ W _ - e whenever
m > n. If W;" = Wm for m ~ n, while W;" = w_ - efor m > n, then

(2.10)

for m = 0, 1,2,.... Choose the root a> I satisfying the equation a + a -I =
W _ - e. If m > n then Lemma 2.1 implies constants a, fJ such that

(2.11 )

(To prove this, replace m by m - n.) Moreover, a> 0, since m + I may be
larger than IfJl. Thus Cm(w; ,... , w;")/Cm(w_ - e) > 0 when m = 0, 1,2,... , and
this ratio has a positive limit as m -> 00, whence

Cm(Wl''''' wm)/Cm(w _ - e) ~ infmCm(w; ,... , w;")/Cm(w_ - e) = y_(I:) > 0,

(2.12)

when m = 0, I, 2,.... Similar arguments find y+(e) unless W + = +00, but then
Cm(w+ + e) = +00 whenever m > O.

Remark. One easily finds examples where y_(e) -> 0 or y+ (e) -> +00 as
e -> O.

3. FINITE SEQUENCES

Here, keeping the positive constants y!' Y2 ,... , we specify a positive integer
n, and, fixing real numbers ~o, ~n+ I' we seek real values ~I , ... , ~n such that

for m = I,... , n. (3.1 )

First, we restate the problem. Given x = (~I ,... , ~n) ERn and ~I ,..., ~n * 0,
define

n n + 1 n

F(x) = - ~ y; log I~ml + (1) '\' ~; + '\' ~m~m+ I; (3.2)
m=l m=O m 0

then F'(x) = (oF/o~1 ,... , of/o~n)' where

for m = I,... , n. (3.3 )
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Clearly, x satisfies (3.1) if and only if F'(x) = 0, because necessarily
¢\ ,,,., ¢n *- °when x satisfies either of these conditions. Hence the solutions
of (3.1) are precisely the stationary points of F(x).

Truncations of sequence (1.5) yield solutions for equal Ym having negative
values for some ¢m' (Appendix B gives further such solutions.) Nevertheless,
here we suppose nonnegative ¢o' ¢n + I' and again we admit only nonnegative
¢P"" ¢n' But if x ~ 0, then, by (1.8),

while if k = 1,.", n, then, for each k,

F(x) ~ -YZ log I¢kl- (~ y~) log Ilxll·
m*k

(3.4 )

(3.5 )

Hence {x ERn: x ~ 0; (J ~ F(x)}, for any real (J, is bounded in the norm
(1.8); and this level set, via this fact, is bounded away from the coordinate
hyperplanes. Also, the set is closed, whence it is compact. Thus F(x), on the
orthant {x ERn: x ~ Of, achieves its minimum at some strictly positive x*.
This x* is a nonnegative solution; our next theorem shows that no other x is
a nonnegative solution.

LEMMA 3.1. If x satisfies (3.1), where ¢o' ¢I "00' ¢n + I ~ 0, then either°< ¢m <Ymfor m = 1'00" n or, specifically, n = 1 and (¢o' ¢p ¢2) = (0, Y" 0).

Proof If nonnegative ¢1 ,,,., ¢n satisfy (3.1) then each exceeds zero. If
n = 1 and ¢o = ¢2 =,0, then ¢, = Y, since ¢, > 0. Otherwise ¢m-I + ¢m+ I > 0
for m = 1'00" n; whence ¢~ < ¢m(¢m _, + ¢m + ¢m+ I) = y~ and ¢m < Ym'

THEOREM 3.2. If¢o' ¢n+ \ ~ °then F(x) has a unique stationary point x*
in {x ERn: x ~ O}, and this is the unique nonnegative solution of (3.1).
Moreover, F(x), on this orthant, achieves its minimum at x*.

Proof Let the set K = {x ERn: 0 ~ ¢m ~ Ym, m = 1'00" n}. Then the
nonnegative stationary points of F(x) are just the nonnegative solutions of
(3.1), and any such solutions, by Lemma 3.1, are necessarily elements of the
set K. By definition, the Hessian F"(X) is the n X n matrix (o2F/o¢;o¢j); by
(3.3),

(3.6)

Here Section 2 defines the matrix En' If x has domain K then, by definition,
1 + y~¢,;;2 ~ 2 when m = 1'00" n; so, by Lemma 2.2, F"(x) is positive definite
and F(x) is strictly convex (Ortega and Rheinboldt [10, p. 87]). Thus F(x),
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on the domain K, can have no stationary point but a unique minimum.
However, F(x) on Ix ERn: X? O} has a global minimum by our previous
remarks.

COROLLARY 3.3. For n(I), n(2) any nonnegative integers and k= 1,2,
let ~~k) , ... , ~~~~l+ I ? O. For Yl' Y2"" any positive reals and m = 1,... , n(k), let

(3.7)

If ~ll) = C;~2) for any distinct subscripts p, q, then ~~I) = ~~2) for all common
indices i.

Proof Assuming p < q, replace m by m - p. Setting n = q - p - 1, use
Theorem 3.2 if n > 0. Then ~~I) = ~l2) when the new index i = 0,... , n + 1 or
the old index i = p,... , q. Forward or backward recurrence determines
uniquely all other ~lk).

COROLLARY 3.4. If ~o is a constant and ~ I , ... , ~n obey (3.1), then
~n+ 1(~1) = qn+ l(~I)/rn+ 1(~1)' where qn+ I' rn+I are real polynomials. Indeed,

m = I,..., n, (3.8 )

where qo(~) is the constant ~o' ql(~)=~,rO(~)=rl@=1. Moreover, ~"+I

has an open domain Sn+I' satisfying [0, +00 ) c S" + I' whereon ~"t I

uniquely determines C; 1 provided ~o , ... , ~n ? O. The function ~ 1(~n + I) for each
n is monotone and bicontinuous on this domain.

Proof Direct use of (3.1) proves everything through (3.8). By Corollary
3.3, if S = gl: 0 :< ~o, ... , ~n + I f then ~n+ 1(~I)' on S, has a well-defined inverse
function, whence C;n +1(~l)' on S, has no local extrema. Specifically, this
function has no minimum where ~n+ I(~l) = O. Hence ~n+ I(~I) is continuous
and monotonic on some larger open domain S' including S, and its inverse
is continuous and monotonic on an open domain S n + 1 including 10, +00 ).

4. INFINITE SEQUENCES

Here we treat the infinite system (1.4): demanding nonnegative solutions,
we prove a general existence theorem and obtain a uniqueness criterion.
First, we state an equivalent fixed-point problem, using an auxiliary function
g. Specifically, we let

(4.1 )
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where -00 < r < +00; equivalently, we have

and 0> O. (4.2)

Thus g'(r) = do/dr = -2/(1 +0-
2), and g(O) = -g'(O) = 1. Hence g(r) and

-g'(r) decrease from 1 to 0 as r increases from 0 to +00. Fixing real C;o ~ 0
and 0 < c = (Yl' Y2"") E ROO, define the map T: ROO --+ ROO via

m = 1,2,.... (4.3 )

Then (1.4), for each positive m, is a quadratic equation in C;m, and the
nonnegative root of this is the right side of (4.3). Therefore the nonnegative
solutions of (1.4) are precisely the fixed points of T. Our first lemmas
concern this map T.

LEMMA 4.1. If 0 is the zero vector then ID ~ c; if x is any real vector
then 0 < Tx. If x ~ y (resp. x <y) then Ty ~ Tx (resp. Ty < Tx) and
T2x ~ T2y (resp. T2x < T2y). If C;o = 1J0 and x, y E Roo, while

rm~ (1/2Ym) min(C;m_l + C;m+ l' IJm-1 + IJm+I) (4.4)

for m = 1,2,... , then

I(TY)m - (Tx)ml ~ Ig'(rm)/21 . {llJm-1 - C;m-ll + IlJm+ 1- C;m+ II}

for m = 1,2,.... (4.5)

Proof Clearly (ID)I = Yl g(C;0/2YI) ~ YI' since C;o ~ 0; and (ID)m = Ym
when m ~ 2. Also, any (Tx)m > 0 because g is strictly positive, and T
reverses inequalities because g is strictly decreasing. Finally, the mean value
theorem asserts

where the interval containing rm has bounds (C;m-l +C;m+ 1)/2Ym and
(IJm-1 + IJm+I)/2Ym' But we increase Ig'(rm)! when we decrease rm.

LEMMA 4.2. If k = 0, 1, 2,..., then

0= roo~ T2kO< T2k+ 20 < T2k+30 < T2k+lO~ ID. (4.7)

Thus, componentwise, T 2kO has monotone increasing limit x - and, similarly,
T2k +10 has monotone decreasing limit x+ as k--+ 00. Also, Tx- =x+ and
Tx+ = x-, while

(4.8)

If T has fixed point x*, so that Tx* = x*, then x- ~ x* <x+.
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Proof Lemma 4.1 shows, first, that 0 < TkO if k = 1, 2,..., whence
Tk+10 < roo Specializing these facts gives 0 < T20 < ro; then using T gives
T20 < T 30 < TO. Together, these are (4.7) when k = O. Repeatedly using T2

inductively completes (4.7). If j is any positive integer, then the increasing
sequence roo, T 20, rO, ... has upper bound T 2

j+ 10, and the decreasing
sequence ro, T30, T50,... has lower bound T2jO; so these sequences have
componentwise limits x-, x+. Thus Tc::;;; T20 < x- ::;;; T2

j+ 10, while
T2jO ::;;; x + < ro ::;;; c, and these yield (4.8) when j -> 00. But g is continuous,
whence

(Tx-)m = Ym . g(limk«T2kO)m_l + (T2kO)m+ 1)/2ym)

=Ym .limkg«(T2kO)m_l + (T2kO)m+I)/2Ym)

= limk(T2k +10)m = (x+)m' (4.9)

Therefore Tx-=x+; likewise Tx+=x-. If Tx*=x* then O<x*; so
T2kO< T2kx* = x* = T2

k+ IX * < T 2k +10, where k = 0, 1,2,.... Let k -> 00 to
find x - ::;;; x * ::;;; x +.

Remark. The sequences x - and x + underlie many later results.

THEOREM 4.3. If ~o ~°and c > 0 then T has a fixed point, whence (1.4)
has a nonnegative solution. Either x - = x + and this solution is unique, or
x- <x+ and this solution is not unique. Specifically, it is unique when
infmYm/m = 0.

Proof Given x- = (~1' ~2 '00') and x+ = (~t, ~i ,... ), define

and x"'=(~1,~i'~3'~:'00')' (4.10)

Clearly Tx± = x± and Tx'" = x"', because Tx- = x+ and Tx+ = X-. If
solution x* is unique then x± = x"', whence x- = x+; conversely, solution
x* is unique whenever x- =x+, since x- <x* ::;;;x+. But x- =x+, by
Corollary 3.3, if ~;;; = ~~ for any positive m. If (m = ~~ -~,;; for
m = 0, 1,2'00" then (0 = 0, since ~r;- = ~o = ~o. Also,

(m - I + (m + I = (~~ - I + ~~ + I) - (~,;; - I + ~,;; + I)

(4.11 )

by (4.2) and Lemma 4.2, where wm = 1 + y~g~~,;; > 2 by (4.8). However,
(I' (2 '00' >°for multiple solutions, whence

(4.12 )

by (2.2), (2.7), and (4.8), where m = 1,2,... ; thus infmYm/m ~ '1> 0.
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5. NORM-CONVERGENCE

Here we add a hypothesis on the given vector c, and we treat convergence
in the sequence norms (1.9). Choosing any Yo;;;:' 0, define ¢Ayo) = inf S(c)
and 'IIe(Yo) = sup S(c), where S(c)={(Ym_I+Ym+I)/2Ym:m=I,2, ... }.
Previously, we required only 0 < c E Roo, and thus 0 <: ¢e <: 'lie <: +00.
Hereafter, we assume also

0< inf{Ym+I/Ym: m = 1, 2, ... } <: sUP{Ym+l/Ym: m = 1, 2,... } < +00, (5.1)

whence now 0 <¢e <: 'lie < +00. Conversely, the finiteness of 'lie implies
(5.1), independently of Yo' Also, ¢e(Yo) and 'IIe(Yo) are continuous, and ¢e(Yo)
is bounded, while 'IIc(Yo) -4 +00 as Yo -4 +00. If 0 <: Po and 0 < bE Roo, then
¢b(fJO) and 'IIb(fJO) have similar definitions and properties. Moreover, b is a
concave sequence when lfIb <: 1.

If 0 <: K <A <: 1 then 0 <: K¢e < A'IIe < +00, whence 0 <g(A'IIe) <
g(K¢e) <: 1. Taking Ko= 0, define

j= 0,1,2,.... (5.2)

Then Ao= 1 and K1 = g('IIe), so that 0 = Ko < K1 < Ao= 1 and, inductively,

0= Ko< ... < Kj < Kj+ 1 < Aj+ I <Aj < '" <Ao= 1. (5.3)

Hence Kj TK* and Aj 1A* as j -4 00, where 0 < K* <: A* < 1. Also, by
continuity, K* =g(A*'IIe) and A* = g(K*¢e)' whence, by (4.2),

and (5.4 )

Eliminating unity, we find A*/K*; substituting this, we find K* :

A*/K* = (lfle - ¢e) + [1 + ('lie - ¢c> 2
1
1f2 ;;;:, 1, (5.5)

K,;2 = 1 + 2lf1e('IIe - ¢e) + 2'11e[1 + ('lie - ¢c>2]1f2. (5.6)

Thus K*(Yo) and AAYo) are continuous functions. If Yo -4 +00, then 'lie -4 +00
while ¢e has an upper bound; but (l - A~)/¢e = (1 - K~)/'lle' whence A* -4 1
and YoA* -4 +00. Also, YoK* = YoA* = 0 when Yo = O. Previously, we have
assumed a nonnegative ~o; hereafter, we can and will choose a nonnegative
Yo such that

(5.7)

Given y, z E Roo, define [y, zJ = {x E Roo: y <: x <: z}. If 0 <: K <: K* <:
A* <: A <: 1, and x = (c;l' c;2 ,... ) E [KC, AC J, then

Kf>e <: K(Ym-l + Ym+1)/2Ym <: (c;m-l + c;m+ 1)/2Ym <: A(Ym_l + Ym+ J )/2Ym <: Alfie.
(5.8)
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(5.9)

whence Tx E [g(A'I'c) C, g(K~c) c]. Therefore, if j = 0, 1,2,..., then, induc
tively,

T([KjC, AJ.(']) C [Kj+ 1C, AjC] C [KjC, AjC],

T([Kj+IC,AjC])C [Kj+1C,Aj+1C] C [Kj+1C,AjC].

But 0 < Tx if xERCf); so 0 < T2x < c, or T2xE [KoC,AoC]. Thus
T2j+2X E [KJ.(',AjC], where j = 0, 1,2,.... Hence [KjC, AjC], invariant under T,
must contain all fixed points of T; though [K* C, A* c], by example (1. 7), need
contain no iterates TjO for finitej (since T2jO= KiC and T2j+ 10 = AjC). These
new concepts yield some sharper results.

THEOREM 5.1. If infmYm/am = 0, where a +a-I = 1 +A;2 and a> 1,

then T has a unique fixed point.

Proof If x±, x'f are distinct fixed points then K*C~X- <x+ ~A*C. If
(m = ¢~ - ¢;;; , where m = 0, 1, 2,..., then (m satisfies (4.11), where
wm = 1 + y~g~~;;; > 1 +A;2 > 2. But (0 = 0 and (I > O. Therefore
infmYm/am > 0, because

Ym+I> (m+ I = (I Cm(w l , ... , wm) > (I Cm(l +A;2)

=(I(am+l-a~m~l)/(a-a~I). (5.10)

LEMMA 5.2. Let 0 ~ ¢o = 110 and KjC ~ x,y E R co (and YoK* ~ ¢o ~
YoA*), wherej~O. Let O~Po and o<b=(fJpP2,... )ER CO (where 'l'b or
Ily-xll b may be +00); then

(5.11)

Proof If m= 1,2,... then Kj~c~ (l/2Ym) min(¢m~ I+~m+ l' l1m-l + l1 m+ 1)'
whence (4.5) shows that

I(TY)m - (Tx)ml

Pm

~ Ig'(i~JI \ Pm-I l11m~I-¢m-11 +Pm+l l11m+I-¢m+lll. (5.12)
I Pm Pm-l Pm Pm+1 \

THEOREM 5.3. Let O~Po and O<bER co such that 'l'blg'(K*~JI < 1.
Let 0 ~ ¢o and 0 ~ X

OE R co such that II Txo - X
Olib < +00. If K = {x E R co:

o~ x; II x - X
OII b <+oo} then T(K) C K and T IK has a unique fixed point

x*. IfyEK then IITjy-x*llb~O asj~ 00.
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Proof If x E K then KoC ~ x,xo, and Lemma 5.2 shows that

II Tx - xOllb~ II Tx - Txoll b+ II Txo - xOllb

~ II'bllx - xOllb+ II Txo - XO lib < +ro. (5.13 )

But Tx ~ 0; so Tx E K. Also, II'blg'(Kjll'o)1 < I for large enough j, and
Kn [KjC, AjC) is a T-invariant set by (5.9). Hence T, on this set, is a
contraction map by (5.11). If x* is its unique fixed point, and y E K, then
T2H 2y E K n [KjC, AjC) and limkll T2H2+ky - x* lib = O.

COROLLARY 5.4. Let O~fJo and 0 < bER oo
• Let II'b~ I (i.e., b is

concave) and II . lib' II . lie be equivalent norms. Then T has a unique fixed
point x* in ROO, and Iimjll Tjx - x* lie = 0 for any vector x.

Proof Here II'b Ig' (K* ~J ~ Ig' (K* ~JI < I because K* ~e > O. If XO = 0
then 0 < Txo ~ c; so II Txo - XO lie ~ 1 and II Txo - XO lib < +ro. Thus
K = {x E ROO: 0 ~ x; IIxlle < +ro} and T IK has a unique fixed point x*. If
xER oo then 0 < Tx and T2xEK, whence limJTj+2x - x *lle=
limjll TH 2X - x* lib = O.

6. ANOTHER UNIQUENESS THEOREM

Although the hypotheses of Theorem 5.1 include the restriction
a +a-I = 1 +A;2, actually the value a, by Theorem 2.3, need obey only the
condition a +a -I < I + lim infmy~g~~;;;. However, no explicit formula
gives this limit, whereas (5.5) and (5.6) determine A*. Here we strengthen
(5.1): we assume that limm Ym+ I/Ym exists and

f.i = limm Ym+ I/Ym > O. (6.1 )

(Again, ~o ~ 0 and C > 0.) Thereby, extending results of Freud [5) and Nevai
[9], we obtain a new uniqueness theorem via our initial remark. If
x=(~1'~2,... )EROO, then x(r) will denote the series L~=I~mrm in the
complex variable r, and I/s(x) will denote the series radius of convergence,
whence

(6.2)

(the Cauchy-Hadamard formula (Goursat and Hedrick [6, pp. 377-378])).
The value sex), in some sense, measures the "growth rate" of (~1' ~2"")' If
also yER OO then s(x+y)~max(s(x),s(y)), and if O~x~y then
sex) ~ s(y).
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LEMMA 6.1. (Generalization of Freud [5]). If Tx = x, then ~m/Ym has a
limit as m ---+ 00, and

(6.3)

Proof If 8_=liminfm~m/Ym and 8+=limsuPm~m/Ym' then 0~8_~

8 + ~ I, since °< ~m/Ym< 1. Any positive e determines integer n(e) such that

!(Ym_hm)-.u- 1 !< e,

!(Ym+ tlYm) -.u! < e,

whenever m~ n(e). Accordingly,

~m/Ym > 8_ - e,

~m/Ym < 8+ + e,
(6.4 )

whenever m > n(e). If m takes increasing values such that ~m/Ym---> 8 + , then

(6.6)

and initially e was arbitrary. Therefore 8+ [8 + + 8 _(p + .u - 1 ) 1~ 1; similarly,
1~8_[8_+8+(p+.u-l)1. Thus 8~~8~, or 8_=8+=8. Finally,
1 = 82 [1 +.u + .u - 1 ].

LEMMA 6.2. Let W_ = lim infmwm and W+ = lim sUPmwm' where
2~WI'W2'"'' Let (0=0 and Z=«(1'(2'''')*0, where the (m satisfy (2.1).
If a _ (resp. a +) satisfies the relations a > 1 and a + a - I = W _ (resp. W +),
then

(6.7)

Proof This simply restates Theorem 2.3.

THEOREM 6.3. (Generalization of Nevai [9]). If c = (Yl' Y2"") satisfies
(6.1) then Tx = x has a unique solution.

Proof Recall Theorem 4.3; suppose nonuniqueness. If (m = ~~ -~;;;,

where m = 0, 1, 2,... , then (0 = °while (I' (2 ,... > 0, and the (m obey (2.1)
where W m= 1 + y~g~~;;;. Moreover, limmwm= 1 + 8- 2 =.u + 2 + .u- 1

, by
Lemma 6.1, because x± and x f are fixed points of T. If a> 1 and

MO/JR/4 (,
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a+a- I =J.i+2+J.i- 1
, then J.i<a by inspection, and s(z)=a by

Lemma 6.2. But 0 <x- :( x+ <c and z = x+ - x-; so s(z):( s(c) = J.i, and
this is a contradiction.

Remark. Theorems 4.3, 5.1, 6.3 and Corollary 5,4 provide different
uniqueness criteria, and our motivating recurrences (1. 3) require no more. If
(1,4) had a unique nonnegative solution when lim infmYm+IIYm < +00, then
this test would include all these criteria, but this paper attempts no such
comprehensive result. However, the following argument shows that
unbounded ratios Ym+llYm permit multiple nonnegative solutions.

Fix ~o ~ 0; then consider any real ~l and use (1,4) to generate
x = (~l' ~2 ,... ). Either all ~m *- 0 and the sequence continues indefinitely, or
some ~m = 0 and the sequence terminates there. Moreover, Corollary 3,4 and
Lemma 4.2 show that x is a nonnegative solution if and only if
~l E [~1 , ~i]. If this interval does not contain ~l' then x has a first
nonpositive element ~m' Now equate numerators in (3.8) and equate
denominators in (3.8) to define qm(~)' rm(~) for all m:

m= 1,2,.... (6.8)

Clearly, the factors of each denominator r m are simply powers of the
preceding numerators qk' Also, the specified ~n is the quotient qn(~I)lrn(~I)'

If ~I <~i (resp. ~I > ~i) then [~l' ~1] (resp. [~i, ~I]) contains a zero of
qn(C;)lrn(~) unless it contains a pole, and then it contains a zero of some
preceding qm' Hence the zeros of {qm:m= 1,2,... } have ~1 and ~i as
monotone limits. But q\ has the unique root 0, while q2 has the positive root
YI g(~o/2Yl)' Given any positive e, choose all y~ so large that no root of
qm+ p via (6.8), exceeds distance el2 m+ I from some root of r~ rm_I' The
roots of the latter are all roots of some preceding qk' Therefore, ~;- *- C;i
when e is small enough.

7. SEQUENCE COMPUTATION

The recurrence (1.3), by definition, has fixed value C;o = 0, and Section 8
will show that this recurrence, by Theorem 4.3, has unique nonnegative
solution x* = (C;;", c;i,... ); also, independent remarks will furnish C;;".
Theoretically, ~o and C;;", via (1.3), determine all c;; for higher m. However,
we find here that such forward iteration is an unstable algorithm, and we
give a stable one. Hereafter, we fix values Yo = C;o = 0 because they simplify
the discussion, and we take any positive sequence c = (y I' Y2 ,... ) such that
(1,4) has unique nonnegative solution x *. (Later results will need assumption
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(6.1).) Further, we choose any e l >° and, from eo, el' we define
x = (el' e2 , ... ) via (1.4). This sequence x represents a hypothetical
computation. Clearly, a program can set eo = 0, but it cannot set e1 = ~r

unless the latter is a machine number-and example (1.3) will have
irrational er Moreover, if the machine e1 were actually et, still, roundoff
error would soon produce an m such that the computed em was not e;:;; so
the effective el would not be precisely er

However, any distinct el and er yield increasingly different em and ~;:;. If
~I *er then x *x*, and either some finite em = 0, whence x has no further
elements, or else some finite em <0, since x* is the only nonnegative
solution. If en + 2 is the first nonpositive element of x, then 0 <eI , ... , ~n + I '

and em ~ Ym, by Lemma 3.1, when 1~ m ~ n. Now let (Yl' Y2"") satisfy
(5.1), whence (5.4) defines constants K*, A*; and let (m = (-1 )m(em- e;:;) for
m=0,1,2,.... Then (0=0 and (1*0, while repeating calculation (4.11)
produces again recurrence (2.1), where

wm= 1 +y~/~~em) 1 +A;I. min{Ym/~m:m=1,...,n}) 1 +A;I > 2 (7.1)

for m = 1,... , n. But using Lemma 2.2 gives immediately

for m = 1,..., n. Therefore, the discrepancy em - e;:; has alternating sign and
exponentially growing magnitude until the value em becomes zero or a
negative quantity. Clearly, (1.4) has the same instability for backward
iteration, because (2.1) has the same properties for decreasing m.

Since we cannot obtain er ,..., e: by an initial-value method, instead we
shall compute these numbers via a boundary-value approach. Hereafter, we
assume (6.1), and invoking Lemma 6.1, initially we use (6.3) to make the
estimates

m = 1, 2,..., n + 1. (7.3 )

Now, fixing this value ~n+ I' we solve (3.1) or, recalling the equivalent
problem, we minimize F(e l , ... , em)' However, this is a trivial matter unless
n> 1; and then, by Lemma 3.1, the domain KO contains the minimum, where

KO = {x ERn: 0 < ~m < Ym' m = 1,... , nf, (7.4)

while also, on this domain, Theorem 3.2 shows that F(x) is an analytic,
strictly convex function. The literature contains many optimization methods,
but these facts suggest a Newton-Raphson algorithm. Specifically, taking
(7.3) as a first guess, we solve iteratively F'(x) = O. Indeed, given any point
xo1d in KO, we compute a successor X new = X o1d - .1x, where (tentatively)

(7.5)
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provided KO contains the resulting x new ; otherwise some a . .1x replaces this
.1x, where 0 <a < 1. The n X n Hessian matrix F"(x), on the domain KO, is
symmetric, tridiagonal, and diagonally dominant by (3.6). Also, the
subdiagonal has all entries unity. Hence the system (7.5), through Gaussian
elimination, produces the required .1x in 2n - I multiplications/divisions.

Still, our goal is the values ~:;;. If the estimated ~n + I' via this algorithm,
determines ~I , ... , ~n with high precision, then the remaining error in ~I , ... , ¢n
reflects the initial error in ~n + I • Indeed, if 0 > I and 0 + 0 - I ~

min(w 1 , ... , wn ), hence if

(7.6)

and (I i= 0, then (k-I/(k < I/o for k = 1,...,11 + 1. Obviously this is true when
k = I, and if it is true when 1 ~ k ~ m, then

(7.8)

Even the poor estimate (7.3) for ~n + 1 should therefore yield accurate values
for earlier ~m' Roughly bounding the error I~n + I - ~:+II, we merely choose
extra large n and keep only those ~m where (7.8) implies small enough error

I~m-~:;;I·
Here ~n+I=(,u+I+.u-I)-I/2Yn+1 by (7.3), while K*Yn+I~~:+I~

A*Yn+1 by (5.9). Thus

l~n+1 -~:+I! ~ Yn+l' max(!K* ~ (,u + I +.u- 1)-1/21,

1,1* - (,u + I +.u- I)-I/2I)· (7.9)

Further ingenuity may improve this bound. If we can find
y- = ('71' '72"") E ROO and y+ = ('7t, '7i ,... ) E Roo such that

(7.10)

then we can conclude T([y-,y+]) c [y-,y+], hence x* E [y-,y+j, so that

(7.11 )

Indeed, x* E [TkY -, Tky + J for k = 0, 1, 2,... , but iterating T may require too
much computation. Section 9 uses this device.
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Recurrence (1.3) involves a parameter p such that p> -1. Specifically,
~o = 0 and c = c(P) = (Yl(P), Yz(P), ... ) > 0, where

Ym(P? = (i)[2m +p - p(_I)m 1 for m = 1,2,.... (8.1 )

Putting m = 0 yields Yo(P) = 0, and this is an appropriate value since it obeys
relations (5.7). Also, limmYm(p)lm=O and limmYm+l(P)IYm(P) = 1. Hence
O<~C(p)~ljIC(p)<+CX) and O<K*(P)~A*(P)<1. Thus (1.3) has a
nonnegative solution x* by Theorem 4.3, and x* is the only nonnegative
solution by Theorem 4.3 or 6.3. Moreover, any two sequences C(Pl)' C(P2)
define equivalent norms II· Ilc(p); and obviously c(O), in particular, is a
concave sequence. Therefore, if y E Roo then limk II Tky - x* Ilc(p) = 0 by
Corollary 5.4; and if x* = (~i, ~i,... ) then limm~;IYm(P) = 1//3 by
Lemma 6.1.

Indeed, we can refine the last statement. Putting r = 11m, suppose

(12Im)1/2~';;=f+(r)= 1 +atr+airz + ,

(12Im)I/2 ~';;=f-(r)= 1 +a1r+ azr 2 + ,

Then (1.3) implies the relations

m even,

modd.
(8.2)

0= (-3If+(r» + f+(r) + (1 - r)l/2 f-(r/(1 - r»

+ (1 + r)l/2 f-(r/(1 + r», (8.3)

0=(1 + pr)(-3/f-(r» + f-(r) + (1 - r)l/2 f+ (r/(1 - r»

+ (1 + r)l/2 f+(r/(1 + r». (8.4)

The coefficient of each power rk in Eq. (8.3) (resp. Eq. (8.4» has the form
4at + 2ai: (resp. 4ai: + 2at) plus some terms in the prior a/, aj-.

Therefore, equating these coefficients to zero yields inductively the values of
all at, ai:. Computing the first few produces the following series:

(12Im)I/2~';; = 1 + r[-pI2] + r2[(p2/4) + (1/24)]

+ r3 [(-p 3/16) + (-3p/8)]

+ r4 [(-5p 4/128) + (35p ZI64) + (-7/576)] + ... , m even;

(8.5)
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(12/m)l/2 C;; = 1 + r[p] + r Z[(_pz/8) + 0/24)]

+ r 3[(-p3/16) + (5p/16)]

+r4[(5p4/64) + (-5pz/16) + (-7/576)] + ..., modd.

(8.6)

So far, these expansions have only formal significance, but we show next
that (8.5), (8.6) are asymptotic series. If x=(C;"C;z,... )ER CO and
O<d=(ol,Oz,... )ER CO

, then C;m=O(om) as m~oo if and only if
suP{IC;m/oml:m=I,2,... }<+00 (Erdelyi [2, p.5j), or Ilxlld<+oo. In
particular, if om = m V for m > n, where v is any real number and n is any
positive integer, then C;m = O(m V

) as m -+ 00.

LEMMA 8.1. Any real p > -1 and real v~ 0 determine an integer n > 0
and a sequence d(v) = (0" oz,... ) > 0 such that K*Oo~~o~A*Oo, where
00 = 0, while

(8.7)

where l/Id(v) = sup{ (Om-l + om+ 1)/2om:m = 1,2,... }, and om = mV whenever
m> n.

Proof If 00 = 0 and otherwise om = m V then clearly

as m-+ 00. But Ig'(K*(P)~C(p»)1 < 1; hence (8.8) implies some integer n such
that

Ig'(K*(P) ~c(p»)1 • (Om-l + om+ 1)/2om< 1 (8.9)

when m > n. If we define bm= nV when 1~ m ~ n, then we satisfy (8.9)
when m = 1,2,.... The first condition is trivial because C;o = O.

THEOREM 8.2. Expansions (8.5), (8.6) are asymptotic series.

Proof. If we truncate (8.5), (8.6) at the power r k then the resulting
polynomials will be nonnegative for small positive r, and we can add
multiples of the power rk+ 1 so that the resulting g +(r), g - (r) will be
nonnegative for all positive r. If h +(r) ~ 0, h - (r) ~ 0, where

0= (-3/h +(r)) + h+(r) + (1 - r)l/Z g-(r/(1 - T))

+ (1 + r)l/2 g-(r/(1 + r)),

0= (1 +pr)(-3/h-(r)) +h- (r) + (1 - r)l/Z g+ (r/(l - r))

+ (1 + r)I/Z g+(r/(1 + r)), (8.10)
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then h +(r) and h - (r) have convergent power series for small enough Ir I,
while g + (r) and h+ (r), g - (r) and h- (r), have the same such expansions up
to powers r k• If x=(el'e2,... ), where em=(m/I2)I12 g +(1/m)
(resp. (m/12)1/2 g-(1/m» when m is even (resp. odd), then x:) 0 and
(Tx)m = (m/I2)1/2 h+(1/m) (resp. (m/12)1/2 h-(1/m» when m is even (resp.
odd). Here we exclude components with m = 1. Hence j(Tx)", - ~",j =
O(m- k -(I/2» as m->oo. If v=-k-(I/2) in Lemma 8.1, then
II Tx - xlld(v) < +00 for the corresponding d(v). But T has a unique fixed
point x* by Theorem 4.3, and Ilx* - xll dlv ) < +00 by Theorem 5.3. Thus
~: - ~m = O(m- k -(1/2» as m -> 00.

9. COMPUTATIONAL REFINEMENTS

Freud's [3-5] papers assume the weight function w(r) = IrlP exp(-jrjr),
and this function is clearly even; so each orthonormal polynomial p",(r) is
either even or odd. Indeed, po(r) = 71:0 and PI(r) = 71:. r, where 71:0 ,71:. are
constants and our definition makes them positive. Then the orthonormality
relations (1.1) and standard gamma-function integrals (Abramowitz and
Stegun [1, Eq. (6.1.1)]) yield easily

r/271:~ = r«(p + I)/r), r/271:i = r«(p + 3 )/r). (9.1 )

But Section I fixes r = 4, and system (1.3) assumes ~m = (71:m_ I/71:m)2. Hence
the values (71:m_ /lrm)2 from the polynomials Pm form the unique nonnegative
solution x* of Freud's recurrence, and

~f=r«(p+ 3)/4)/r«(p + 1)/4). (9.2 )

Theoretically, the recurrence now determines all further ~:; but (7.2) shows
that such forward iteration is an exponentially unstable algorithm, and
experiment confirms this. However, the boundary-value approach of
Section 7 yields accurately the values ~: for larger m.

Moreover, Section 8 motivates a further refinement. To obtain an initial
estimate for the computed em' truncate the series (8.5}-(8.6) at some power
r k

• Then I~", - ~~I ~ constant· rk+(I/2), where r = 11m; so this bound is
worst when m is smallest. Let ef,...,e: be the desired values, and
em = y. m- k -(I/2), taking y as the constant such that en is the desired
tolerance. Let n(j) = min(n, 2j

) where j = 0, 1, 2,.... Then the j'th step of our
refined algorithm accepts en(j) + I, , en + I from the truncated series, but it uses
Newton iteration to improve el , ,~n(j) until the tolerance en(j) for this step
exceeds the absolute maximum of the first n(j) residuals. Each step, with
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increasing precision, clearly adjusts those values ~m which, on the next step,
would otherwise need the most correction. Thus each step computes a longer
sequence until n(j) reaches n, but early steps involve quite small linear
systems (7.5).

If p=O then Ym=vm/2 by (8.1), whence ~e= I/V2 and 'lie = 1 by
Section 5; so

K* ~ 0.52200941, ..1.* ~ 0.69683244 (9.3)

by (5.5}-(5.6). Moreover, symbolic computation generates the series (Trager
[11 J):

f+(r) =f-(r) = 1 + r 2/2 3
• 3 - 7r 4/2 6 . 32+ 37r6/2 10 .3 2

+ 92,963r8/2 15 .3 4
- 200,039r 10/2 16 .3 2+7,394,856,055r I2/2 22 . 36

- 416,852,554,595r 14/2 25 . 37 +.... (9.4)

Indeed, one can prove inductively that (9.4) contains no odd powers. The
structure of Eq. (8.3) and (8.4) implies the nonconvergence of this series,
which therefore shows that one cannot strengthen Theorem 8.2. The authors
used several terms of this series for p = 0, and they tried the refined
algorithm of this section with n = 250. No step needed more than one
Newton iteration; some steps required none at all. Thus the numerical linear
algebra did not exceed 4n multiplications/divisions. To improve further the
resulting ~I , ... , ~m' the authors took these computed values and applied
repeatedly the map U: x -+ (x + Tx)/2, that is,

m= I, ... ,n. (9.5)

This process has much slower convergence, but its starting-point was almost
the exact solution. Hence the numerical values, after six iterations, showed
complete stability in 64-bit floating-point arithmetic. Appendix A gives the
first 20 terms.

Having thus minimized roundoff, we ignore it, and, to estimate accuracy,
we use (7.8). To find a we need (7.6). For a better value we could explicitly
substitute min{Ym/¢m: m = 1,..., n}, but for a faster result we need verify only
that ~m ~ ..1.* Ym when 1~ m ~ n. A conservative a then satisfies the equation
a+a-I=I+A;Z, whence a~2.6872901 and a7~1012.0498>103; so
dropping seven terms from the end of the computed sequence improves the
accuracy by a factor of at least 103

• Even (7.9) yields the crude estimate that
1~251 - ~t511 < 1, whence I~m - ~:::I < 10- 15 for m ~ 216; but (7.11) gives a
better bound when

,,;;, =«2m - 1)/24)1/2, ,,~= «2m + 1)/24)1/2, m = 1,2,.... (9.6)
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(Direct computation checks (7.10) for m = I; simple algebra proves it for
m> 1.) Now 1~251 - ~t511 <0.00456 because ~t51 satisfies (7.11), and
I~m -- ~~ I:::;; 2 X 10 -15 when m:::;; 222. Indeed, if ~II + 1 is the last value, for
any n>29, while 11;;+ I ~ ~II+ I:::;; YJ:+ I' then

so that I~m - ~~I < 10- 14 for any m ~ n - 28.
Another argument improves this estimate. If 150 = 0 and sequence

d=(t5 l ,t52 , ••• ), where 15 1 = ... =159 =1/27 and otherwise t5 m =m- 3f2 , then
Sections 4 and 5 show that

(9.8)

If Y = (I} l' 112 ,... ) E Roo, where I} 1"'" 11251 are the computed ~1''''' ~251 and
otherwise

(9.9)

then II Ty - y lid < +00. Also, K* C ~Y by inspection, whence II Tky - x* lid -t 0
by Theorem 5.3. But Lemma 5.2 implies that

q-I

II y - x* lid ~ Y II Tk+ Iy - TkYlid + II Tqy - x* lid
k=O

co

~ ~ akIITy-ylld~31ITy-ylld;
k=O

(9.10)

whence l~m-~~1~31ITy-ylld·m-3f2 for l~m~251. A finite
computation yields II Ty - ylld'

Clearly, our ~m should be very accurate when the index m is small. If we
put p = 0 and use (9.2) to find ~t, then ~I' from the preceding algorithm, has
the same value to the last computed digit.

ApPENDIX A

If P = °and ~o = 0, then the arguments of Section 8 show that system
(1.3) has unique nonnegative solution x*, and the method of Section 9 finds
that components ~t,..., ~to have the following values.
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m C;~ m C;~

1 0.33798912003364232 11 Q95775608488417893
2 0.40167965976351733 12 1.0002887465597798
3 0.50510423234482221 13 1.0410891789282268
4 Q57805815033171129 14 1.0803527252385585
5 Q64676738204724493 15 1.1182407644978825
6 Q70786315090515241 16 1.1548882639750164
7 Q76442312605207728 17 1.1904095014212202
8 0.81702175201098198 18 1.2249022329454762
9 0.86647036419002228 19 1.2584508557944947

10 0.91324989944000748 20 1.2911288293490708

ApPENDIX B

If all Ym have the same value Y, then truncations of (1.5) yield solutions of
(3.1) where the C;m have varying sign. This appendix, for equal Ym' lists more
solutions of this finite system. If any real YI, ... ,Yn and C;o,... ,C;n+l satisfy
(3.1), then the constant multiples ay1''''' aynand ac;o ,..., aC;n +1 satisfy (3.1).
Hence, taking YI = ... = Yn = land fixing C;o = 1 = ±C;n+ l' we give all real
solutions for the smallest few n. We suppress the algebraic details for
brevity; the final result suggests the intermediate substitutions.

If n = 1 and C;2 = -1, then (C;o, C;1' C;2) = (1, rJ, -1), where rJ = ±1. If n = 2
and C;3 = -1, then

or (1)(2, rJ - 1, rJ + 1, -2), (B.l)

where rJ = ±y1. If n = 3 and C;4 = 1, then

(C;o,"" C;4) = (1,1, -1, -1,1) or (1, -1, -1, 1, 1)

or (1)(2,rJ-rJ- 1,2rJ- 1,rJ-rJ- 1,2), (B.2)

where rJ4 + 2rJ3 - 4rJ2 - 2rJ - 1 = O. This last equation has just two real
roots:

rJI ~ 1.5815460,

If n = 4 and C;s = 1, then

rJ2 ~ -3.1120097. (B.3)

(C;o,"" C;s) = (1,1, -1, -1,1,1)

or (1, rJ-I, -1 + fJ, -1 - rJ, _rJ-l, 1)

or (1,(_2(-1,(-1,(-1,(_2(-1,1), (B.4)
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where 11 = ± 1//2 and ,3 - 4' + 2 = O. This last equation has three real
roots:

'I c::: 1.6751309, '2 c::: 0.53918887, '3 c::: -2.2143197. (B.5)

No two sequences with the same n have the same pattern of signs. However,
it is unclear whether this is significant.
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